Inhibition of reactive astrocytes with fluorocitrate retards neurovascular remodeling and recovery after focal cerebral ischemia in mice.
نویسندگان
چکیده
Glial scarring is traditionally thought to be detrimental after stroke. But emerging studies now suggest that reactive astrocytes may also contribute to neurovascular remodeling. Here, we assessed the effects and mechanisms of metabolic inhibition of reactive astrocytes in a mouse model of stroke recovery. Five days after stroke onset, astrocytes were metabolically inhibited with fluorocitrate (FC, 1 nmol). Markers of reactive astrocytes (glial fibrillary acidic protein (GFAP), HMGB1), markers of neurovascular remodeling (CD31, synaptophysin, PSD95), and behavioral outcomes (neuroscore, rotarod latency) were quantified from 1 to 14 days. As expected, focal cerebral ischemia induced significant neurological deficits in mice. But over the course of 14 days after stroke onset, a steady improvement in neuroscore and rotarod latencies were observed as the mice spontaneously recovered. Reactive astrocytes coexpressing GFAP and HMGB1 increased in peri-infarct cortex from 1 to 14 days after cerebral ischemia in parallel with an increase in the neurovascular remodeling markers CD31, synaptophysin, and PSD95. Compared with stroke-only controls, FC-treated mice demonstrated a significant decrease in HMGB1-positive reactive astrocytes and neurovascular remodeling, as well as a corresponding worsening of behavioral recovery. Our results suggest that reactive astrocytes in peri-infarct cortex may promote neurovascular remodeling, and these glial responses may aid functional recovery after stroke.
منابع مشابه
Astrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery.
Crosstalk between the brain and systemic responses in blood is increasingly suspected of playing critical roles in stroke. However, how this communication takes place remains to be fully understood. Here, we show that reactive astrocytes can release a damage-associated molecular-pattern molecule called high-mobility-group-box-1 (HMGB1) that promotes endothelial progenitor cell (EPC)-mediated ne...
متن کاملDelayed inhibition of c-Jun N-terminal kinase worsens outcomes after focal cerebral ischemia.
The stress-activated protein kinase c-Jun N-terminal kinase (JNK) is a central regulator in neuronal death cascades. In animal models of cerebral ischemia, acute inhibition of JNK reduces infarction and improves outcomes. Recently however, emerging data suggest that many neuronal death mediators may have biphasic properties-deleterious in the acute stage but potentially beneficial in the delaye...
متن کاملInhibition of Angiotensin-Converting Enzyme Reduces Cerebral Infarction Size in Experimental-Induced Focal Cerebral Ischemia in the Rat
Background: The role of Renin Angiotensin System (RAS) in ischemic/reperfusion (I/R) injuries is not fully elucidated. Furthermore, it is not clear whether inhibition of RAS by Angiotensin-Converting Enzyme (ACE) inhibitors has beneficial effects in terms of protecting the brain from I/R injuries. In this study enalapril is used as an ACE inhibitor to evaluate the role of RAS in I/R injuries in...
متن کاملInhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats
Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...
متن کاملThe Effect of Enalapril on Brain Edema and Cytokine Production Following Transient Focal Cerebral Ischemia in Mice
Introduction: Cytokines production as one of the inflammatory pathways in CNS is responsible for most brain damages following ischemia. On the other hand, during inflammation and brain ischemia, most of the renin- angiotensin components (RAS) increase locally. While it is established that blockade of RAS especially AT1 receptors has a protective effect on ischemia, the interaction of cytokines ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
دوره 30 4 شماره
صفحات -
تاریخ انتشار 2010